首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1115篇
  免费   193篇
  国内免费   184篇
  2023年   42篇
  2022年   15篇
  2021年   36篇
  2020年   77篇
  2019年   79篇
  2018年   80篇
  2017年   60篇
  2016年   77篇
  2015年   64篇
  2014年   49篇
  2013年   73篇
  2012年   36篇
  2011年   50篇
  2010年   36篇
  2009年   53篇
  2008年   77篇
  2007年   75篇
  2006年   59篇
  2005年   55篇
  2004年   53篇
  2003年   40篇
  2002年   46篇
  2001年   41篇
  2000年   29篇
  1999年   23篇
  1998年   29篇
  1997年   14篇
  1996年   20篇
  1995年   10篇
  1994年   10篇
  1993年   8篇
  1992年   15篇
  1991年   7篇
  1990年   10篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   5篇
  1984年   3篇
  1983年   9篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1977年   1篇
  1976年   4篇
  1958年   1篇
排序方式: 共有1492条查询结果,搜索用时 15 毫秒
21.
The distribution and species diversity of aerobic organotrophic bacteria in the Dagang high-temperature oil field (China), which is exploited with water-flooding, have been studied. Twenty-two strains of the most characteristic thermophilic and mesophilic aerobic organotrophic bacteria have been isolated from the oil stratum. It has been found that, in a laboratory, the mesophilic and thermophilic isolates grow in the temperature, pH, and salinity ranges characteristic of the injection well near-bottom zones or of the oil stratum, respectively, and assimilate a wide range of hydrocarbons, fatty acids, lower alcohols, and crude oil, thus exhibiting adaptation to the environment. Using comparative phylogenetic 16S rRNA analysis, the taxonomic affiliation of the isolates has been established. The aerobic microbial community includes gram-positive bacteria with a high and low G+C content of DNA, and γ and β subclasses of Proteobacteria. The thermophilic bacteria belong to the genera Geobacillus and Thermoactinomyces, and the mesophilic strains belong to the genera Bacillus, Micrococcus, Cellulomonas, Pseudomonas, and Acinetobacter. The microbial community of the oil stratum is dominated by known species of the genus Geobacillus (G. subterraneus, G. stearothermophilus, and G. thermoglucosidasius) and a novel species “Geobacillus jurassicus.” A number of novel thermophilic oil-oxidizing bacilli have been isolated.__________Translated from Mikrobiologiya, Vol. 74, No. 3, 2005, pp. 401–409.Original Russian Text Copyright © 2005 by Nazina, Sokolova, Shestakova, Grigoryan, Mikhailova, Babich, Lysenko, Tourova, Poltaraus, Qingxian Feng, Fangtian Ni, Belyaev.  相似文献   
22.
The objective of this study was to evaluate differences in correlations among Biological Elements and environmental parameters for different river types, analysed at two different spatial scales. A total of 82 sites, with at least good ecological status, were sampled across Europe, representing three core river types: Mountain rivers (26 sites); Lowland rivers (29 sites) and Mediterranean rivers (17 sites). At each site samples of macrophytes, macroinvertebrates and fishes were taken during spring, following the methodological procedures established by the European STAR project. Environmental parameters were also recorded, based on a site protocol developed by the European projects AQEM and STAR. Environmental parameters were divided into three categories: aquatic habitats (mesohabitat scale), global features (reach scale) and obligatory typology parameters of Water Framework Directive (WFD) (geographical scale). Data were analysed to evaluate at the two scales, first, relationships among biological elements, and second, relationships between biological elements and environmental parameters. Within each river type, correlation matrices (Bray–Curtis distance) were calculated separately for each biological element and for each category of environmental parameters. All biological elements were correlated (p<0.01) to the larger spatial scale: macrophytes and macroinvertebrates are more correlated in lowland and mountain rivers, while in Mediterranean rivers, fish and macrophytes presented higher correlations. These links tend to be consistent for different spatial scales, except if they are weak on a larger regional scale, obligatory parameters of WFD were, in most cases, significantly correlated with the three biological communities (p<0.05). Results at different spatial scales supported the hierarchical theory of river formation. Reach and mesohabitat environmental parameters tend to explain aquatic communities at a lower spatial scale, while geographical parameters tend to explain the communities at a major spatial scale.  相似文献   
23.
Temporal and spatial distribution patterns of lotic larval trichopteran assemblages in relation to environmental variables were investigated in Madeiran streams using multivariate analyses. TWINSPAN classification detected distinct faunal assemblages related to spatial factors between non-polluted high altitude sites and lower lying enriched sites where tolerant taxa were predominant but showed strong seasonal shifts in species composition and abundance. The 15 TWINSPAN end groups were grouped into five arbitrary clusters based upon the seasonal and spatial changes in the trichopteran assemblages detected by the analysis. Significant differences between environmental variables (distance from source, altitude, temperature, conductivity, alkalinity and nitrate) and the trichopteran assemblages (using trichopteran based metrics) of these clusters were confirmed by the Kruskal-Wallis test (H) and Dunn’s test. Chemical classification of samples within the clusters revealed a strong association between trichopteran assemblages and water quality. Canonical Correspondence Analysis and Monte Carlo global permutation tests also identified significant associations between the larval assemblages and physicochemical variables such as temperature and conductivity along a strong physical gradient (altitude, slope) and nitrate along a weaker seasonal gradient. Analysis of functional feeding group distribution patterns clearly showed that mid to high altitude indigenous woodland sites were trophically diverse whilst the lower reaches of the islands streams are trophically impoverished with strong seasonal shifts between two feeding groups of enrichment tolerant taxa. Trichopteran shredders are exclusive to indigenous woodland sites, indicating a limited distribution associated with land use, allochthonous input and habitat destruction. The results indicate that several ‘environmental filters’ operate at different levels upon the islands trichopteran fauna, producing temporally and spatially distinct ‘subsets’ of species best able to exploit conditions and resources at a given site or time, confounding the direct comparison of these insular systems with the findings of the River Continuum Concept, traditionally associated with unaffected continental lotic systems.  相似文献   
24.
A prominent response of temperate aquatic ecosystems to climate warming is changes in phenology – advancements or delays in annually reoccurring events in an organism's life cycle. The exact seasonal timing of warming, in conjunction with species-specific life-history events such as emergence from resting stages, timing of spawning, generation times, or stage-specific prey requirements, may determine the nature of a species' response. We demonstrate that recent climate-induced shifts in the phenology of lake phytoplankton and zooplankton species in a temperate eutrophic lake (Müggelsee, Germany) differed according to differences in their characteristic life cycles. Fast-growing plankton in spring (diatoms, Daphnia ) showed significant and synchronous forward movements by about 1 month, induced by concurrent earlier ice break-up dates (diatoms) and higher spring water temperature ( Daphnia ). No such synchrony was observed for slow-growing summer zooplankton species with longer and more complex life cycles (copepods, larvae of the mussel Dreissena polymorpha ). Although coexisting, the summer plankton responded species specifically to seasonal warming trends, depending on whether the timing of warming matched their individual thermal requirements at decisive developmental stages such as emergence from diapause (copepods), or spawning ( Dreissena ). Others did not change their phenology significantly, but nevertheless, increased in abundances. We show that the detailed seasonal pattern of warming influences the response of phyto- and zooplankton species to climate change, and point to the diverse nature of responses for species exhibiting complex life-history traits.  相似文献   
25.
土壤呼吸是植物固定的碳由陆地生态系统进入大气的主要途径之一; 凋落物分解是养分循环的重要环节。陆地植物的90%以上可同菌根真菌形成共生关系, 菌根真菌对于植物获取环境中的养分具有重要的作用。然而, 其对土壤呼吸和凋落物分解的影响却经常在生态系统对环境变化的响应研究中被忽视。本文系统地综述了国内外相关研究进展, 对菌根真菌如何影响土壤呼吸和凋落物分解这两个过程及这种影响如何受到环境变化的制约做了全面的分析, 并对以往研究中存在的问题以及未来的研究方向提出了展望。  相似文献   
26.
土壤微生物作为生态系统中重要的分解者,在对动植物残体以及土壤有机质降解的过程中,一方面释放CO2到大气中,是土壤碳排放的重要组成部分;另一方面,在分解的过程中,形成了可供给植物利用的无机养分.由于温度对代谢活动的直接影响,过去对微生物代谢的研究主要集中在生长季,通常假设冬季土壤微生物的活力可以忽略.陆地表面近60%的区域经历着季节性积雪覆盖和季节性土壤冻结的影响.近年来的研究表明,由于积雪的覆盖,形成很好的绝缘层,雪被下土壤中微生物仍然具有显著的活性,对土壤碳排放和植物的养分吸收具有重要的贡献.本文就积雪和冻结土壤系统中的微生物碳排放和碳氮循环的季节性特征进行了全面的分析,综述了国内外冬季雪下碳氮循环的研究现状,提出了目前研究中存在的问题和未来的研究方向,强调了开展温带冬季雪下土壤微生物碳氮循环研究的必要性和重要性.  相似文献   
27.
李媛媛  董世魁  朱磊  温璐  李小艳  王学霞 《生态学报》2013,33(15):4683-4691
以三江源区不同退化程度高寒草甸和不同恢复年限人工草地作为研究对象,通过野外调查与采样、实验室分析,探究了高寒地区退化天然草地与人工恢复草地的植被群落繁殖构件数量变化.结果表明:在群落水平上,天然草地退化和人工草地建植会对植物繁殖构件的数量和生物量产生影响.随着天然草地退化程度的增加,营养枝数量和生物量则明显下降,而繁殖枝的数量和生物量明显升高(P<0.05);随着人工草地恢复年限的增加,营养枝的数量和生物量逐渐增加,而繁殖枝的数量和生物量则逐渐降低(P<0.05);随着恢复年限的增加,人工草地繁殖构件的变化逐渐接近未退化天然草地.在功能群水平上,植物繁殖构件数量亦随草地退化程度和人工恢复年限而变化.随着恢复年限的增加,禾本科、莎草科、杂类草的营养枝数量和生物量均呈现显著增加(P<0.05),而繁殖枝数量和生物量则显著下降,禾本科的繁殖构件数量远远大于莎草科和杂类草;随着退化程度的增加,三大功能群的营养枝枝数和生物量显著增加(P<0.05),而繁殖枝则呈现相反的趋势.实证了草地退化和人工恢复改变植物群落繁殖分配对策的科学假设,为高寒草地植被恢复重建技术的发展和更新提供理论支撑.  相似文献   
28.
胡春明  刘平  张利田  李曜  西东升  康海全 《生态学报》2013,33(20):6662-6669
以典型河漫滩湿地 —— 二卡自然保护区为研究区域,进行生态阈值研究。根据湿地补给河流 —— 海拉尔河的月均流量频率分布特征,选取58.72 m3/s(P=74.6%)、119.26 m3/s(P=44.4%)、190.35 m3/s(P=23.8%)分别代表河流的低、中、高径流期,分析各径流期湿地分布特征。结果表明,低、中径流期内草本沼泽及盐化沼泽所占比例较高,而高径流期则以季节性河流湿地及湖泊湿地为主。低径流期内,作为湿地中心区的湖泊湿地景观破碎度出现一个较明显的跃变,由中径流期的0.57增加到1.37。此时的湿地状态可近似的作为区域的生态阈值,即维持湿地面积占全区域面积的43.03%。而中、高径流期湿地面积比例可近似作为保护区湿地面积的适宜值和理想值,分别为53.66%和69.53%。其研究结果为二卡自然保护区的管理及保护提供支持,并为河漫滩湿地研究提供思路。  相似文献   
29.
Commercial selective logging and the conversion of primary and degraded forests to agriculture are the biggest threats to tropical biodiversity. Our understanding of the impacts of these disturbances and the resulting local extinctions on the functional roles performed by the remaining species is limited. We address this issue by examining functional diversity (FD), which quantifies a range of traits that affect a species' ecological role in a community as a single continuous metric. We calculated FD for birds across a gradient of disturbance from primary forest through intensively logged forest to oil palm plantations on previously forested land in Borneo, Southeast Asia, a hotspot of imperilled biodiversity. Logged rainforest retained similar levels of FD to unlogged rainforest, even after two logging rotations, but the conversion of logged forest to oil palm resulted in dramatic reductions in FD. The few remaining species in oil palm filled a disproportionately wide range of functional roles but showed very little clustering in terms of functional traits, suggesting that any further extinctions from oil palm would reduce FD even further. Determining the extent to which the changes we recorded were due to under‐utilization of resources within oil palm or a reduction in the resources present is an important next step. Nonetheless our study improves our understanding of the stability and resilience of functional diversity in these ecosystems and of the implications of land‐use changes for ecosystem functioning.  相似文献   
30.
Eucalypts face increasing climate stress   总被引:1,自引:0,他引:1  
Global climate change is already impacting species and ecosystems across the planet. Trees, although long‐lived, are sensitive to changes in climate, including climate extremes. Shifts in tree species' distributions will influence biodiversity and ecosystem function at scales ranging from local to landscape; dry and hot regions will be especially vulnerable. The Australian continent has been especially susceptible to climate change with extreme heat waves, droughts, and flooding in recent years, and this climate trajectory is expected to continue. We sought to understand how climate change may impact Australian ecosystems by modeling distributional changes in eucalypt species, which dominate or codominate most forested ecosystems across Australia. We modeled a representative sample of Eucalyptus and Corymbia species (n = 108, or 14% of all species) using newly available Representative Concentration Pathway (RCP) scenarios developed for the 5th Assessment Report of the IPCC, and bioclimatic and substrate predictor variables. We compared current, 2025, 2055, and 2085 distributions. Overall, Eucalyptus and Corymbia species in the central desert and open woodland regions will be the most affected, losing 20% of their climate space under the mid‐range climate scenario and twice that under the extreme scenario. The least affected species, in eastern Australia, are likely to lose 10% of their climate space under the mid‐range climate scenario and twice that under the extreme scenario. Range shifts will be lateral as well as polewards, and these east–west transitions will be more significant, reflecting the strong influence of precipitation rather than temperature changes in subtropical and midlatitudes. These net losses, and the direction of shifts and contractions in range, suggest that many species in the eastern and southern seaboards will be pushed toward the continental limit and that large tracts of currently treed landscapes, especially in the continental interior, will change dramatically in terms of species composition and ecosystem structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号